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Abstract Most soft tissues possess an oriented architecture of collagen fiber bun-
dles, conferring both anisotropy and nonlinearity to their elastic behavior. Trans-
verse isotropy has often been assumed for a subset of these tissues that have a sin-
gle macroscopically-identifiable preferred fiber direction. Micro-structural studies,
however, suggest that, in some tissues, collagen fibers are approximately normally
distributed about a mean preferred fiber direction. Structural constitutive equations
that account for this dispersion of fibers have been shown to capture the mechani-
cal complexity of these tissues quite well. Such descriptions, however, are compu-
tationally cumbersome for two-dimensional (2D) fiber distributions, let alone for
fully three-dimensional (3D) fiber populations. In this paper, we develop a new
constitutive law for such tissues, based on a novel invariant theory for dispersed
transverse isotropy. The invariant theory is based on a novel closed-form ‘splay in-
variant’ that can easily handle 3D fiber populations, and that only requires a single
parameter in the 2D case. The model is polyconvex and fits biaxial data for aor-
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tic valve tissue as accurately as the standard structural model. Modification of the
fiber stress-strain law requires no re-formulation of the constitutive tangent matrix,
making the model flexible for different types of soft tissues. Most importantly, the
model is computationally expedient in a finite-element analysis.

Key words nonlinear elasticity — invariant theory — anisotropy

1 Introduction

Constitutive modeling of soft tissues is an important prerequisite for the com-
putational analysis of the systems-level response of biological structures to ap-
plied loads and pressures. Computational modeling in many cases is the only way,
short of implantation, to evaluate the mechanical response of tissues to the full
3D mechanical environment seen in vivo. Moreover, computational modeling per-
mits the analyst to directly query the relationship between structure and stress, and
to explore the design space of newly proposed, implants, bioprostheses or tissue-
engineered constructs. Numerical models of tissue systems can be computationally
intensive. This is particularly true of tissues that require complex material models,
and systems that involve fluid-structure interactions. The material models used in
these systems must not only be accurate, they must also be computationally effi-
cient.

The past few years have seen an increased interest in nonlinear continuum me-
chanics as a framework for describing the mechanical behavior of soft tissues. The
now well-established mathematics of this field provides a perspective from which
rigorous, thermodynamically-reasonable constitutive equations can be proposed—
a characteristic that was lacking in many earlier ad hoc tissue descriptions. The
geometric and material nonlinearities seen in tissues fit well into this framework,
and anisotropy is readily handled by the theory of invariants [Spencer, 1972]. In
addition, constitutive equations posed within this framework can call upon de-
veloped computational techniques, permitting the exploration of tissue-level and
organ-level mechanics involving finite deformations. An excellent reference for
both nonlinear continuum mechanics and related variational principles, as they
apply to soft tissues, is the textbook by [Holzapfel, 2000]

Structural constitutive equations that view soft tissues as statistically-oriented
distributions of fibers come from a different tradition based on the experimen-
tal observation of fiber dispersion, or splay. For example, [Sacks, 2003] showed
a correlation between the intensity distribution of the small-angle light scatter-
ing of bovine pericardium and both fiber orientation and dispersion. Similarly,
[Holzapfel et al., 2002] showed that smooth muscle cells in arterial media are sta-
tistically oriented around two opposing helical directions. From these cellular ori-
entations, collagen fiber orientations were inferred. An earlier observation of fiber
dispersal in bovine pericardium was documented by [Zioupos and Barbenel, 1994].
The need to account for fiber dispersion architectures when modeling soft tissues
was first addressed by [Lanir, 1983]. Since then, structural models with disper-
sion have been proposed for passive myocardium [Horowitz et al., 1988], lung
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[Mijailovich et al., 1993], heart valves [Sacks, 2000], aorta [Wuyts et al., 1995],
and tendon and ligament [Hurschler et al., 1997]. To model fiber splay, typically
either a von Mises [Hurschler et al., 1997] or Gaussian [Sacks, 2000] distribution
is adopted.

Mathematically, the inclusion of such probability distribution functions into
constitutive models presents little challenge, but computationally, they are cum-
bersome. The probability density function acts as a weighting function for a fiber
stress-strain rule. Functionally, in the 2D case, this can be represented as

/2
S= [ $,6) RON®) ® N(6) o, )

-nfy

where S is the second Piola-Kirchhoff stress, S /() is a fiber stress-strain rule,
R(6) is a probability distribution function, and N(6) ® N(6) governs the orientation
of a fiber family in the 2D plane. What is important to note is that the product
of fiber stress and the weighting function must be integrated over a full semi-
circle in the 2D case, Eq. (1), or an equivalent hemisphere in the 3D case. These
integrals have traditionally been evaluated numerically. Numerical experiments on
one such equation for mitral-valve tissue suggested that eighteen discrete intervals
were necessary to capture the full range of constitutive behavior [Einstein, 2002].
This is mechanically equivalent to having eighteen weighted fibers in the plane.
A single integral of this kind in the constitutive equation implies two integrals
to be evaluated in the constitutive tangent matrix. Likewise, 3D fiber dispersion
would require two integrals to be evaluated for stress, and four for the constitutive
tangent matrix. In the computational model, these operations are evaluated at every
iteration, of every time step, at every Gauss point, for every finite element, in some
geometric model of interest.

In this paper, we develop an alternative constitutive law for tissues whose col-
lagen fiber populations are statistically distributed. To address the problem of com-
putational cost, the integral in Eq. (1) is replaced with a novel closed-form ‘splay
invariant’ that requires a single parameter in the 2D case, and a single operation
per iteration. To evaluate the model, we compare its correlative capability against
biaxial data for aortic-valve tissue. In addition, we compare the capabilities of
our model against those of a published structural model [Billiar and Sacks, 2000b,
Einstein, 2002] that is based on the paradigm in Eq. (1) and which fits the data
quite well.

2 Theory

Consider a mass point originally given by the set of coordinates X = (X, X2, X3)
assigned at an arbitrary reference time of #y. At current time z, this mass element is
located by a different set of coordinates x = (x1, x3, x3). Let the motion of this mass
point through space be described by a one-parameter family (in time) of locations
considered to be continuous and sufficiently differentiable to allow the definition
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of a deformation gradient

Fij(to,t) = %, or in tensor notation, F(t, £) = [0x,/9X.], (2)
J
where indices r and ¢ denote row and column, and have values 1, 2, 3. The ability
to invert this field (i.e., F~!(to,7) = [0X,/dx.] such that F7'F = FF~! = |, where
| = [6,] is the identity tensor and 6;; denotes the Kronecker delta) ensures that a
given particle cannot occupy two locations at the same instant in time, and that two
discrete particles cannot occupy a single location at any given moment in time.
Afhiliated with the deformation gradient defined in Eq. (2) are the left- and
right-deformation tensors! defined by

B=FF' and C=F'F, 3

respectively, where T implies matrix transpose (e.g., B(x;#0,7) = [FFu] and
C(X;ty,1) = [FiurFic] with the repeated index k being summed from 1 to 3 in
the usual manner). Inverses B~! and C~! exist because the tensor fields B and C
are symmetric positive-definite. The left-deformation tensor B appears in Eulerian
constructions, while the right-deformation tensor C appears in Lagrangian con-
structions.

2.1 Invariants

Consider a vector ag = [a,(X; )] of length ag-ag = ax(X; to) ax(X; 1p) = 1 that lies
tangent to a material line of strength (e.g., a fiber) in the reference state #o. After
a deformation, this material line will have stretched by an amount A(z, ¢) that is
quantified by A2 = ag- Cag = ax(X; to) Cre(X; 1o, 1) a;(X; to). As such, there exists a
spatial vector a = [Ja,(x; )] with L2 norm |(all; = (a- a) '~ = ) that in the deformed
state ¢ of Green’s metric C relates to material vector ay via the mapping a = Fay,
which is the transformation law of a polar vector.?

From the classic theory of invariants [Spencer, 1972], there are five invariants
that are needed to describe a material with transverse isotropy (i.e., a material with
a single fiber family); they are:

I=uC, Iy=3}(tuC)®*-u(C?), Ig=detC=(detF)? “)
Iy=ag-Cag=a-a=21% Iy =ay C’ay=a-Ba, 5)

! Tensors B = FFT = V2 and C = FTF = U? are often refetred to as the left and right
Cauchy-Green deformation tensors, respectively, because V and U are called the left- and
right-stretch tensors, so named because of the polar decomposition F = VR = RU wherein
RRT = I. We prefer to call B and C the left- and right-deformation tensors. Historically,
[Cauchy, 1827, pp. 60-69] used B~ (sometimes expressed as ¢) and [Green, 1841] used C,
while [Finger, 1894] introduced their duals, B (sometimes expressed as b) and C~!. There-
fore, naming these fields after Cauchy and Green seems an injustice to Finger, especially
since Finger introduced B into the literature.

% The transformation law b = F~Thy applies to axial vectors whose norms |[b|l; = (b-b) 2
are measured against Finger’s metric C~!. We have no need for axial vectors in this work.
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where trC = Cy is the trace of C, and detC = 1{trC? — tr C[(tr C)? -~ 3tr C?]}
denotes its determinant. The three invariants in Eq. (4) account for isotropic effects,
while the two invariants in Eq. (5) account for anisotropic effects.

Invariants Iy and Iy idealize all fibers in a family as being parallel, which is
not indicative of soft tissues. The fiber architectures of soft tissues are splayed.
We therefore seek an alternative pair of invariants—call them I, and I,yy—that
can replace Iy and Iy for dispersed fiber architectures, yet analytically reduce to
Iy and Iy in the absence of fiber dispersion. It is sufficient to define these new
invariants as

Iy = tr(FKFT) = tr(KC) and Ly, = tr(CKC), (©6)

where K(X; 1) is constrained such that K — ag ® ag = [a.(X; f9)a(X; 1)] in the
absence of splay. Tensor K is a material constant. The main objective of this paper
is to derive such a K appropriate for describing the anisotropy caused by fiber
dispersion.

2.2 Elasticity

The strain-energy density per unit mass, when written in the Lagrangian frame, is
given by [Lodge, 1974, pp. 194-195]

dW = L (S dC), %
200

where dW(X; 1y, t, d¢) represents the work done on a material element of mass den-

sity o = o(x; ), with 09 = o(X; 9). Work is caused by an imposed displacement

acting on the mass element, manifested here as the strain increment %dC(X; to, t,d1).
The material responds to this displacement through the creation of forces, thereby

producing a state of stress S(X; 7o, #).

The second Piola-Kirchhoff stress tensor S pulls forward into the Eulerian
frame [Holzapfel, 2000, pp. 82-84] becoming the Cauchy stress tensor T(x; ¢) via
the well-known mapping S = $F~-'TF-T. Formula & = detF follows from the
conservation of mass. Green strain E(X; 1y, £), defined by E = %(C—I), has an incre-
mental change dE(X; fo, ¢, dt) of dE = %dC = FTEF, wherein E(x; t, #df) = %(C—-I)
with C(x; £, t+dr) = FTF given that F(¢, 1+dr) = [0x,(¢+d0)/0x.(D)].

An elastic solid is defined by the constitutive law [Leonov, 2000]

oW(T,C)
A

with an isochoric constraint of detF = 1 also applying whenever the material is
incompressible. Thermodynamics requires W to be a function of both temperature
T and deformation C. Because the human body maintains a nearly isothermal state,
the temperature dependence of tissues is usually neglected in their analysis. The
strain-energy density W will also depend on any number of material constants that
may appear as scalar, vector, or tensor fields.

S =20 (®)
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Adopting the invariants in Eqs. (4 & 6) as our integrity basis, the general consti-
tutive equation for a transversely isotropic elastic solid with splay, when expressed
in the Lagrangian frame, yields the constitutive equation’

S= (("VJ + I[(Wﬂ)l - ("VJ[C + ImeC—l + (M/,(IV)K + W(v)(CK + KC), (9)
that, when pushed forward into the Eulerian frame, becomes
T= (W[ + I[WH)B - WHBZ + Ime' + (M/,(IV)A + W(V)(BA + AB), (10)

where W; = 200 8W/81,, etc., and A(X; 1y, f) = FKFT. Tensor 7(x; 1y, 1) = %QT is
known as the Kirchhoff stress.

It is a straightforward matter to extend any, existing, transversely isotropic,
integrity basis into an equivalent basis that accounts for splay by applying an ap-
propriate mapping. For example, the classic integrity basis {I;, Iy, Iy, Iy, Iy} maps
into the basis {8y, By, Bm, B, Pv} derived by [Criscione et al., 2001] via their for-
mule (5.3 & 5.4). To introduce splay into their integrity basis, one simply applies
these same mappings, but with {Iy, Iy, Im, Iiny, Iy} replacing (I, Iy, Im, Iy, Iv},
which produces {8;, Bury. Bumy, Bavy, Bevy} as its equivalent set of splay invariants.

The challenges that lie ahead are: i) to establish a tensor field K which is ap-
propriate for splayed fiber architectures, and ii) to arrive at a simple set of five
scalar-valued gradients {W;, Wy, Wg, Wy, Wn} that allows Egs. (9 & 10)
to aptly describe some known set of experimental data.

3 Anisotropic Stiffness

For purposes of assessing the effect of fiber orientation on stiffness, it is useful to
switch from the global coordinate system (X, ¥, Z) with base vectors {ex, ey, ez} to
a local or intrinsic coordinate system (1,2, 3) with base vectors {e;, e;, e3}. These
local coordinates are selected so that the unit vector in the 1-direction (i.e., €;) is
coaxial with the mean direction of fiber orientation ag, while the unit vectors in
the 2- and 3-directions lie in the transverse plane. Because both the intrinsic and
global coordinate systems are considered to be rectangular Cartesian, there exists
an unique, orthogonal, rotation matrix Q such that

ex =Qe;, ey =Qe, ez= Qe;, (11)

where QTQ = | with detQ = 1. Matrix Q represents a rigid-body rotation.

3 The following well-known tensor derivatives are useful in the derivation of constitutive
formule:
oz oz o OdetZ
iz = ez Tt &

=det@)Z".
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3.1 Two-Dimensional Splay Invariants

For transversely isotropic 2D membranes, the unit vector e in the intrinsic coor-
dinate frame that locates a specific fiber tangent within a given fiber distribution is
described via polar coordinates

es(8) = cos(F) e; + sin(6) e, (12)

where angle 6 orients e with respect to the mean-fiber direction e, (i.e., to ag) in
the plane of a membrane (viz., the 12 plane).

We adopt the Gaussian formulation primarily because it allows analytic solu-
tions (cf. Apps. A & B). The cosine of the angle between the mean-fiber direction
e and that of an individual fiber e is given by the inner product e;- e, which from
Eq. (12) is just cos 8. The Gaussian distribution governing a single fiber family
(i-e., transverse isotropy), when expressed in the local coordinate system (1,2, 3)
with base vectors {e1, €3, €3}, is therefore simply

1 ( —-6? )
expl=—s|1,
aVn 202
with a being a standard deviation in the angle of fiber dispersion about the mean-
fiber direction e;. Because the local coordinate direction e; is coincident with the
mean-fiber direction ay, there is no angle between e; and ag, and as such, the mean
angle for this distribution, which is usually denoted by g, is identically zero—a
direct consequence of selecting the intrinsic coordinate system that we did.

In the spirit of [Lanir, 1983], we propose the following definition for our forth
invariant for 2D splay:

nfy

= || —S2BE125)
w c\V2r erf(r/ 2\/55')

~nf2

es(6) - QTCQef(9) do, (13)

where ¢ is akin to @, except that ¢ is not a standard deviation whose units are radi-
ans. A like expression with C? replacing C defines Lyy. The error function erf(x) is
introduced into these formulz for reasons that will be made clear shortly. These in-
variants satisfy the required limits: limg_, Iiv)(s) = Iy and lime_0 Lvy(s) = Iy. In
Eqg. (13), the right-deformation tensor C is rotated into the local coordinate frame
(1,2,3) by the mapping QTCQ, or equivalently, the fiber tangent vector e £ is TO-
tated into the global coordinate frame (X, Y, Z) by the mapping Q e, in accordance
with Eq. (11).

3.2 Three-Dimensional Splay Invariants

For transversely isotropic 3D tissues, ey is located via spherical coordinates
es(6, §) = cos(f) e; + sin()(cos(¢) ez + sin(¢) e3), 14

based on the geometry presented in Fig. 1. Here angles ¢ and ¢ orient e, with
respect to the mean-fiber direction e; of the embedded frame.
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€, (0,

Figure 1 The diagram on the left relates the global coordinates (X, ¥, Z) to the local coor-
dinates (1,2, 3), selected so that the mean-fiber direction g in the Lagrangian frame aligns
with the 1 axis. The diagrams on the right illustrate how the unit vector e, for a specific fiber
within a fiber distribution of a 3D tissue is oriented with respect to the mean-fiber direction
ag via angles 6 and ¢.

For 3D splay with transverse isotropy, our forth invariant is defined by

exp(-62/26%)
I =
) f f s2n)* erf(m/2V2s)

0 -7/

e/(6,¢) - Q"CQes(6, ¢)dodg.  (15)

A like formula with C? replacing C defines Iiyy. The Gaussian distribution is in-
dependent of ¢ in these invariants, because of an assumption of isotropy in the
transverse plane. Once again, lim¢_o Iiny(s) = Iy and lime_g Iivy(s) = Iy.

The fact that a right circular cone is used to describe the angular dispersion of
individual fibers implies a radial symmetry in the transverse plane, which is con-
sistent with the notion of transverse isotropy. An elliptic cone could be employed
if radial symmetry were deemed inappropriate. We will discuss this case later, but
we do not derive it.

3.3 Intrinsic Anisotropic Stiffness

We postulate the existence of a material-constant tensor field that we denote as
k, which serves as a relative (i.e., normalized) stiffness matrix associated with the
anisotropic facets of material geometry. For 2D splay, this field is given by

w2 @ 2
xs)= | PRI o oyee@)ds, (16)

s\2rn erf(r/ 2\/55‘)

)
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and for 3D splay with transverse isotropy, it is given by

2 =/

AT ep(-28)
K= Of { S erf(x/2v2¢)

es(0, ) @ es(0, $)dOdg, {an

where the global stiffness K introduced in Eq. (6) relates to this intrinsic stiffness
K via

K=Q«xQ". (18)

Both of these « matrices obey the required property: lime_0 Q«(s)QT = ay ® ay,
and both of the k matrices are symmetric; therefore, their affiliated K matrices are
symmetric, too. Analytic solutions to Egs. (16 & 17) are provided in Apps. A & B,
respectively. The ability to analytically solve for the anisotropic stiffness K means
that this theory will be efficient when implemented into finite-element codes. In
contrast, the models of[Hurschler et al., 1997], [Sacks, 2000], and [Einstein, 2002]
all require a numeric integration of splay, which is more costly to implement.

The coefficient 1/erf(r/2V2¢) is introduced into Eqs. (16 & 17) to force the
trace of « (and therefore of K) to equal the trace of ag ® ag (viz., tr(ag ® ag) = 1),
which is the only non-zero invariant of tensor ag ® ag. Alternatively, this coeffi-
cient can be viewed as that scaling factor which is required to change the limits of

integration from f_ : to f_ ZZ in the Gaussian distributions present in these formule.

3.3.1 An Approximation The non-zero components of the analytic solutions to
the intrinsic stiffness matrices listed in the appendices are expressed in terms of
error functions with complex arguments (e.g., erf(z), z € C). Because this function
is not found in most, standard, computer, math libraries, we introduce a simple ap-
proximation to the analytic results derived in these appendices that one can readily
employ; it being,

Ia+e®y 0 0
K(s) = 0 f1-e) 0 , 0<f<l, (19
0 0 Li(1-e?)

which is in keeping with the constraint that trk = 1. Parameters f = 0 and
S = 1 apply to 2D splay with the normal to the membrane being in the 2- and 3-
directions, respectively, while f = I applies for 3D splay with transverse isotropy.
Splay will be orthotropic whenever f # !4; specifically, there will be an efliptic
symmetry in the transverse plane.

The analytic (App. A) and approximate (Eq. 19) solutions for « are contrasted
in Fig. 2 for 2D splay, while the formula in App. B and Eq. (19) are contrasted in
Fig. 3 for 3D splay with transverse isotropy. As a result, one can easily justify using
the approximate solution stated in Eq. (19) over its analytic counterparts derived in
the appendices, especially since selecting a Gaussian distribution to describe fiber
dispersion was an assumption in the first place.

Substituting Eq. (19) into Eq. (18) quantifies the global stiffness matrix K that
appears in the elastic model of Egs. (9 & 10) and its associated invariants in Eq. (6).



Invariant Theory for Dispersed Transverse Isotropy

. ———r . T
N — K, ]
8|~ p

- N K ) .

w oy e Approximations|

& [ -

Eosl ]

-5 = ]

Zf i

2 .

z F ]

204 ]

Boap i

T ]
021 ]

[ — ]
gl e ] : L
0.1 10

11

1
Standard Deviation in Angle of Dispersion

Figure 2 Plots of relative stiffness vs. standard deviation in the angle of fiber dispersion
for 2D splay, as determined by Eq. (19) with f = 1 for the approximate solutions, and by

Eqgs. (A4 & AS) for the analytic solutions.
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Figure3 Plots of relative stiffness vs. standard deviation in the angle of fiber dispersion for
transversely isotropic 3D splay, as determined by Eq. (19) with f = 1 for the approximate
solutions, and by Eqs. (B4 & B5) for the analytic solutions.



12 Alan D. Freed et al.

4 Elasticity for Finite Elements

Soft tissues are generally considered to be incompressible or nearly incompress-
ible. In a finite element analysis that involves incompressibility, a standard dis-
placement based interpolation method leads to ill-conditioning of the numerics
[Malkus and Hughes, 1978]. Anticipating like difficulties, following [Flory, 1961],
we seek to decouple pressure from displacement. This decoupling is compatible
with two-field displacement-pressure interpolations that avoid volumetric locking
in particular, and numerical ill-conditioning in general.

Adopting the approach and notation of [Simo and Hughes, 1998, pp. 358-364],
we define

J=detF=%, F=J"%F, C=FF, B=FF, (20)
so that det F = 1, and therefore, detB = detC = 1. Consequently, the strain-energy
density W is assumed to decouple as follows:

2W(C) = W) + WE) + WKO), @1

where W R 4% , and W are the dilational, distortional-isotropic, and distortional-
anisotropic strain energies, respectively.

The above definitions allow the general constitutive equation for elasticity
stated in Eq. (8) to be recast as

5=73WO) i gy (DEV[aW—_(C) + DEV[alV-(}f—’QD, (22)
a6 acC 0C
so that, when pulled forward into the Eulerian frame, it becomes
r=J 9W(6) | + 2(dev F ——B(W_(C) FT|+ dev[F —6’W(l>_(, © FTD,
06 aC oC

(23)

wherein
DEV[e] = (¢) - 5 r((¢)C)C™" and dev[e] = (o) - 1 tr(e)I (24)

are the respective Lagrangian and Eulerian deviatoric operators. Tensors F and &I
are the deviatoric (volume preserving) and dilational (volume changing) parts of
the deformation gradient F, respectively. Although © = J in a mathematical sense,
we follow the admonition of Simo and Hughes and maintain their distinction, to
remind ourselves that displacement and pressure are to be interpolated separately
in finite-element codes suitable for soft-tissue analysis.

4.1 A Simple Model

The spherical strain-energy model advocated by [Simo and Hughes, 1998, pg. 361],
and adopted, for example, by [Kaliske, 2000], is

W) = k1(1(6*-1)-1n6), (25)
where « is the bulk modulus. Equation (25) is recommended because it is a convex
function®, and because its gradient leads to a second-order accurate approxima-

4 PW/66? = 1k(1+67) >0, as O > 0 due to the conservation of mass
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tion of the [Hencky, 1928] definition for dilatation® [Freed, 2004]. Equation (25)
is appropriate for mean-dilation (or reduced/selective) integration schemes used in
some finite-element codes.

Equation (25) does not, however, fit the constraint criteria of the u/p finite-
element scheme advocated by [Sussman and Bathe, 1987]. Thus, if this interpola-
tion scheme is adopted, then

WO) = k3(J - 1), (26)

must be employed as the dilational strain-energy model. In these codes there is no
distinction made between J and 6.

Seeking an isotropic contribution to the deviatoric strain energy with attributes
akin to those affiliated with the dilational part (viz., a convex function whose gra-
dient produces a second-order accurate approximation of true strain), we assign

2WEC) = pui(rC+uC' -6), 27

where y1 is the shear modulus, with G = {C? — tr(C)C + 3[(tr C)? — r C?]1}/ det C
from the Cayley-Hamilton theorem. Tensor C~! exists because detC = 1; conse-
quently, I;(C) = 3[(rC)? - rC*] = u C! = I;,(C™!). A [Mooney, 1940] material
has different material constants assigned to invariants tr C and trC~!, in general,
and in this sense, our model is a Mooney material of special form.

For an anisotropic contribution to the deviatoric strain energy, going back to
the precept that energy is the area under a force/displacement curve, we advocate
that

[tr(KCy' /2
WKO= [ owdr (28)
1

where the fiber stress o is allowed to be an arbitrary function of fiber stretch 4;
it is generally nonlinear in biological tissues. The upper limit of integration is the
forth invariant, as it pertains to the deviatoric part of the deformed state. In order
for this strain-energy function to be convex, it is necessary that E,(1) > o(1) for
all 1 > 0, wherein

do(A) o(d)
E(d) = TR and o(1) = X (29)
which are the fiber tangent-modulus and true-stress, respectively, with the fiber
stretch A being quantified by

A= (ir(KC))" = (r(FKET))". (30)
A physiologically based material model for o-(1) has recently been derived by

[Freed and Doehring, 2004] that applies to crimped collagen fibers, which we have
extended to meet our needs in App. C.

5 e=IndetF ~ }(detF — detF1)
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Substituting the strain energies of Eqgs. (25-28) into Eq. (22) produces an elas-
tic constitutive model suitable for soft-tissue mechanics that when expressed in the
Lagrangian frame becomes

S=«J5O@-6")C" +uJ " DEV[L(I-C )]+ () DEVIK], (31)
or equivalently, when substituted into Eq. (23), becomes
T=«kJ 30 -07")1 +pdev[i(B - B™)] + 0,(1) dev[FKFT], (32)

when expressed in the Eulerian frame. The strain measure %(0 -0 1)is a second-
order accurate approximation of Hencky’s dilational strain field indet F, while the
strain tensor i(B -B™1) is a second-order accurate approximation of the true-strain
field InV [Freed, 2004]. Each contribution is convex provided that k > 0, u > 0,
and E,(1) > o,(A) for all A.

4.2 Tangent Moduli

The relationship between S and C in Eq. (31) is nonlinear. To obtain a finite-
element solution with an iterative Newton-type solution process, that relationship
must be linearized with respect to an incremental displacement. This involves the
specification of a tangent modulus M.® To obtain this tangent, stress S is linearized
over some time interval [¢,, t,,1] such that S,,; = S, + M, 4E with 4E = E,,; —
E, = %(C,,“ -C,) = FZE(x,,;t,,, ty+1)Fy. Said differently, the tangent modulus
corresponds to the slope affiliated with a forward-Euler integration step, and since
it depends on step number n, it needs to be re-evaluated at each step along the
solution path.

Tensor M,, = 20S/3C,, = 4009*W/3C,8C,, defines the tangent modulus in the
Lagrangian frame, which can be pulled forward, component by component, into
an Eulerian frame (commonly called the updated Lagrangian frame) according to
the mapping m;'jke =F ;‘IF;’]F,':KF;’LM;'JKL at the n® time step. Constructing the
components of M,, in Voigt notation is addressed in App. D.

From Eq. (21), suppressing the subscript n designating step number, the tan-
gent modulus takes on the form

M = M(©) + M(C) + M(K, C), (33)
where, through an application of the chain rule, one obtains
= a EWEO _,(PWEO) 06 36 IW®O) 56
T oacac 4e?  8C ~ 4C a6 acec)’
-4 PWEC) _ (Y WD) ¢ aWeC ¢
acaoC ’

aC/ " 8CaC "6C  8C ~oCeC

a0 PWEKE _ (100 #WKE 9 oWKOE 5C

~ 7 a8csCc |\aC) " aCeC " aC aC ecac)
(34)

6 The tangent modulus M is often denoted as C, which we use to denote the right-
deformation tensor of Cauchy.
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with _
aCy; -
ool = IRl - $CyC) 35)

and

9°Cij 1 72 -1p-1 1 =1-1 -1 -1
m = EJ (C,-j(CkmCm + gcke Cmn) - IikIjt’Cmn - Ck€ I,'mljn). (36)
For the preferred volumetric strain energy in Eq. (25), which can be imple-
mented into finite-element codes that use a reduced/selective integration scheme
[Malkus and Hughes, 1978], one arrives at the following pressure tangent modu-

lus’

2
M=2K((1+@—2)QQ®?2+(@—@_1) g6 )

oC ~ aC dCaC 37)

where the gradients 0/8C ® 00/3C and 3*@/5C 6C are handled by the element
technology of the particular finite element being employed. Alternatively, in an
u/p formulation [Sussman and Bathe, 1987], the pressure tangent modulus corre-
sponding to Eq. (26) is given by®

M=«/(JC®C!+(1-NEC'mC! -C'eC™)), (38)

where now the gradients @/0C ® 30/4C and 6*6@/6C C are handled by us, the
constitutive developers, as there is no distinction made between & and J in these
codes.

The isotropic tangent modulus corresponding to Eq. (27) is determined to be

M =p{s"[C'eC?-4(C'eC?+C 20 C™) + §(rC")C o C7|
+i{*FuCc-sPuaCctyC!rC! +4C0CT)
~Cle(UPI-JhCR) - (- BCc el (39)
Lastly, the anisotropic tangent modulus corresponding to Eq. (28) is found to
be given by
K = 77 {(ED) - (D) T# 12K @ K
-iKeC'+C'eK)+ Ly 2Cc'eC)

+ 2o (I 23(C ' C! + 1@ CT) - Ko C - C'eK)). (40)

7 These tensor gradients are useful when deriving the subsequent tangent moduli:

74 az-!
= -l8l & —= -Z'mZ! giventhat Z=2Z".

8 The outer-dyadic tensor product [A®B];zc = A;;Bie, and the inner-dyadic tensor product
[[A X B]]ijkt’ = %(Aikij + AjfBjk + AjkB,'g + AjCBik)v are established in App D.
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5 Collagen Models

The fiber tangent modulus E,(1) and true stress o(2) present in Eq. (40) are de-
fined in Eq. (29), whose stretch A is established in Eq. (30). It is worth noting that
the terms in the fourth-rank tensor representing the anisotropic tangent modulus
are completely independent of the specific collagen fiber model chosen. This im-
plies that a modification of fiber stress-strain law requires no re-formulation of the
constitutive tangent matrix, making the model very flexible for different types of
soft tissues. This is not the case with constitutive models represented by Eq. (1).
In the Examples section that follows, two collagen stress-strain models are
used. The first is the rule adopted by [Billiar and Sacks, 2000b] for aortic valve
tissue; it being,
o(d) = APX-D2 1, (41)

thus the two required terms in Eq. (40) are
o) = AT EBP V22 1) and  E,(1) = ABABF-D2, (42)

As an alternative to this phenomenological model, we also employ the structural
model of {Freed and Doehring, 2004] that is based on the physiology of crimped
collagen fibers. An adaptation of their algorithm is given in App. C (see Alg. 1).
Specifically, given a fiber stretch A, this model returns the true stress o/ and tan-
gent modulus do/d2 of the fiber. There are four physiologic parameters (material
constants defined at the top of the algorithm) that the user must supply.

To implement either of these two models in finite elements, or any other model
for that matter, it is sufficient to change the lines of code corresponding to the
scalar values E,(1) and (). This opens up the possibility of coding the material
model once and selecting an appropriate fiber model with a passed parameter.

6 Examples

We offer our invariant theory as a computationally efficient alternative to statistical
structural models of the type represented by Eq. (1).

In the examples that follow, we match Eq. (31) to biaxial data for fresh aor-
tic valve tissue. These data were generously supplied by Dr. Sacks from the En-
gineered Tissue Mechanics Laboratory at the University of Pittsburgh, and have
been reported on elsewhere [Billiar and Sacks, 2000a]. In the first example, we
adopt an exponential fiber stress-strain rule—the same phenomenological model
used by [Billiar and Sacks, 2000b]. In the second example, we adopt a structurally
based collagen fiber model recently derived by [Freed and Doehring, 2004].

The original data were provided in the format of Lagrangian membrane ten-
sion; that is, force per unit reference length. To characterize the constitutive model,
it was necessary to convert the data to Lagrangian stress. Thus, a thickness of
0.6 mm was assumed. It must also be noted that these data do not comprise a com-
plete biaxial set, in the sense that there were finite off-axis deformation terms (i.e.,
Fip # Fy1 # 0, cf. Fig. 4) with no concomitant measurement of an off-axis stress.
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Figure 4 Mapping of a unit square to the current configuration, corresponding to the last
data point of each of the seven protocols of [Billiar and Sacks, 2000a]. Note that there exist
finite F; # F»; terms.

As such, is was necessary to convert Eq. (31) into its first Piola-Kirchhoff stress
(i.e. P = FS) counterpart for parameter estimation.

An adaptive grid refinement (AGR) global optimization algorithm was imple-
mented in Mathematica™ (Wolfram Research Incorporated, Champagne, IL), us-
ing a commercially available global optimization algorithm (Global Optimization,
Loehle Enterprises, Naperville, IL) [Doehring et al., 2004]. Parameters were si-
multaneously fit to five separate biaxial load protocols, corresponding to fiber—
to—cross-fiber membrane stress ratios of 30:60, 45:60, 60:60, 60:45, and 60:30
N/m. These were the same protocols used to fit the data in the original publica-
tions by [Billiar and Sacks, 2000a, Billiar and Sacks, 2000b]. During the estima-
tion process, the membranes were considered to be incompressible and the shear
modulus pertaining to the isotropic response was set to zero. The objective func-
tion for the global minimum was defined as

N; model data 2
Zi=1 (Pn - P )ij

N 2 + N 2
- i data j data
J=t Lia (Pn ),-j Loy (P22 )ij

. 2
Z?Ql (Pzrréodel _ Péiézta)ij
, (43)

where Py corresponds to the fiber direction, Py, corresponds to the cross-fiber
direction, and N; represents the number of data points for the j® protocol.
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6.1 Exponential Fiber Model

In this example, we specifically compare our constitutive model to both the data
and to a statistical structural model with an exponential fiber stress that was pro-
posed in [Billiar and Sacks, 2000b] and implemented by [Einstein, 2002] as

/2
S =J*DEV j S£(8) R(6) N(6) ® N(6) d6 44)

-7/2

where the fiber stress-strain law S ;(6) and the probability density function R(6) are
given by

exp(—6%/2a?)
aVar

The fiber tangent modulus E, (1) and true stress () for Eq. (31) are given by (42).

Optimized parameters for the constitutive model based on our new invariant
theory (Egs. 31 & 42) were: A = 0.007, B = 21.6, and ¢ = 0.795. Parameters for
the constitutive model based on the statistical structure of Eqs. (44 & 45) were:
A = 0.045, B = 21.0, and a = 0.192. Note that although the units for @ in Eq.
(45) are radians, our ¢ parameter in Eq. (19) is not strictly an angle. To force the
consistency constraint lim¢_,o Q (¢)QT = ap®ay required us to introduce a scaling
factor of 1/erf(r/2V2¢) into R(6).

Overall, the fit was quite good for both models (see Fig. 5). The error calculated
via Eq. (43) for the invariant model of Eqgs. (31 & 42) was 0.40, as opposed to an
error of 0.45 for the model of Eqs. (44 & 45). On average, Egs. (31 & 42) tended
to fit the fiber-direction stress slightly better, while Eqs. (44 & 45) tended to fit
the cross-fiber stress slightly better. With regard to our constitutive model only, the
toe-region of the stress-strain curve (commonly viewed as a transition between the
extinction of collagen crimp and the linear behavior of straightened collagen) was
slightly under-predicted in the fiber direction and over-predicted in the cross-fiber
direction.

$7(6) = A(P(ONOV2_1) and Reg) = (45)

6.2 Crimped Collagen Model

Because the modulus E,(1) and true stress o(1) are generic scalar components
of the anisotropic tangent modulus in Eq. (40), we are free to adopt any reason-
able fiber stress-strain rule, without making the complexity due to tangent modulus
construction prohibitive. This is a desirable precondition for finite-element analy-
sis.

As our second example, consider the micro-structurally based collagen fiber
stress-strain rule based on the physiology of crimped collagen fibers that was re-
cently proposed by[Freed and Doehring, 2004] (Alg. 1 in App. C). This is an algo-
rithm for the elastic response of crimped collagen fibers, based on the observation
that fibril crimp has a three-dimensional structure at the um scale whose geometry
can be approximated as a cylindrical helix. For pre-failure analysis, the model is
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defined in terms of three physiologic parameters: the initial normalized wavelength
of the crimp Hy/ry, the initial normalized amplitude of the crimp Ry/ry, and the
elastic modulus of the collagen fiber in the linear region E ;. Parameters Hy and Ry
are normalized with respect to fibril radius rp.

Values for these parameters were estimated at: Hy/ry = 14.4, Ry/rg = 2.19,
E; = 10.6MPa, and ¢ = 0.768. Overall, the fit of this variation of our constitutive
model was excellent (see Fig. 6), with an error of 0.37. Only the predictions for
the sixth protocol have a significant difference from the data.

7 Finite Element Implementation

Equation (31) and Alg. 1 from App. C was implemented into Adina™ (Adina
R&D Inc., Watertown, MA). A 10x 10 mm square of tissue was meshed with 1764
nodes and 1200 linear solid elements with constant pressure interpolation. A two-
field pressure/displacement interpolation was utilized [Sussman and Bathe, 1987].
Displacement boundary conditions were applied to edge nodes. To characterize the
full range of behavior, the load was divided into 100 load steps. Simulations were
performed for three biaxial stretch ratios: A17: 22 = 1.2:1.4,1.1:1.4, and 1.0:1.4.
The solutions were obtained using a full-Newton method with a sparse equation
solver. Cpu times were 154, 149, and 150 seconds run on a Linux box containing
a single 2.4 GHz Pentium IV processor. In addition to the parametric values stated
earlier, the following isotropic moduli were assigned: x = 20MPa and i = 500Pa.
There was excellent agreement between the FEA and theoretical solutions (see
Fig. 7), with essentially no detectable error.

8 Conclusion

We have proposed an efficient, invariant-based alternative to structural constitutive
equations that accounts for a statistical dispersion of fibers. In contrast to existing
models, our new invariant theory easily handles a 3D fiber population with a sin-
gle mean preferred direction. The invariant theory is based on a novel closed-form
‘splay invariant’ that requires a single parameter in the 2D case, and two parame-
ters in the 3D case. The model is polyconvex, and fits biaxial data for aortic-valve
tissue better than existing aortic-valve models. A modification in the fiber stress-
strain law requires no re-formulation of the constitutive tangent matrix, making
the model flexible for different types of soft tissues. Most importantly, the model
is computationally expedient in a finite-element analysis.

Acknowledgements The authors take this opportunity to thank Prof. Michael Sacks at
the University of Pittsburgh for providing us with his experimental data, and to Dr. Todd
Doehring and Mr. Dimitri Deserranno at the Cleveland Clinic for many delightful discus-
sions on this and related topics.
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Appendices

The primary reason for adopting a Gaussian distribution to describe fiber splay is
that the corresponding stiffness matrix « can be computed analytically. Alterna-
tively, [Hurschler et al., 1997] have employed a von Mises distribution for splay
in conjunction with a Weibull distribution for crimp that they collectively solve
numerically.

A Two-Dimensional Splay

We recall that our local coordinate system was chosen so that

1 cos @
ag =40, er=1{sinf;, (Al)
0 0
and as such
cos’6 siné cosd 0
e;®e; = [sinf cosd sin’d 0, (A2)
0 0 0
which leads to an expression for Eq. (16) that can be solved analytically; it being,
K11 00
k() =| 0 x2 0, (A3)

0 00
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where the two non-zero stiffness components have values of

e [erf (’”' 4 ) + erf ( zoidg )]

=g+ 2 2 )l (Ad)
4erf(2 z )
and
1 © -2 [erf (’”’4“2 ) +erf (”2_\";252 )]
Kp == — LAY (A5)

2

4erf(2‘/_ )

wherein i = V-1 is the unit imaginary number.
The sum of two error functions whose arguments are complex conjugates, i.e.,

erf(x + iy) + erf(x — iy), produces a real result, and as such, «; and k3, are both
reals.

B Three-Dimensional Splay

Here the formulation is somewhat different; specifically,

1 cos @
a9 =10;, ef=4sinfcosg;, (B1)
0 sin 6 sin ¢
and as such
cos? @ sinf cosé cos¢ sinf cos sin¢g
er®es = [sinf cosf cos¢ sin@ cos®¢ sin® 0 sin ¢ cosg|, B2)
sinf cos 6 sin¢ sin’6 sing cos¢  sin®6 sin? 1)

which leads to an expression for Eq. (17) that can be solved analytically; it being,

K11 00
k(¢)=[0 kn O (B3)
0 0 K33
where the two non-zero stiffness components have values of
_25-2 [erf(n+14§2)+ erf(" i4¢2 )]
1
k=gt 2 2o (B4)
4erf ( e )
which is the same as Eq. (A4), and
-2¢2 m+idg? =ids”
B 1 e [erf(——zﬁg )+erf(———2\/§§ )]
ko2 = K33 = 7 = , (B5)
8erf (2 Ve )

where this value for k2, is exactly half that of Eq. (A5), wherein 33 = 0, but here
K33 = K22.
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Algorithm 1
Given Hy/ry, Ro/ro, Ey, and A,, where Hy is the initial wavelength of crimp,
Ry is the initial amplitude of crimp, ry is the initial fibril radius, Ey is the elastic
modulus of the fiber in the linear region, and A, is its ultimate stretch, then:
Set ro=1 sothat Hy=Hy/ry & Ry =Ry/r.
Compute the constant parameters:
Lo = (@rRoP + H)”, A =Lo/Hy <A,
E; = E¢/{(Ho/Lo)* + [Ho(Lo = Ho)/L3)[1 + 37/6m* + 2(Lo/7ro)*1},
where Ly is the chord length of helix over one wavelength, while A is the stretch
and E; is the secant modulus at the transition between the toe and linear regions.
IfA< AThen
£ = 6(ro)*[A? + (4 — DAL
[ {ABH2(A? - AH)[3A% + (872 — 3)A%] + 8(nrp)*[10A% + (3n% — 10)A2]}),
dé/dA = (18HZ(mro)2[3AS + (2872 — 3)A*A? + (32n* — 822 — 3)A22*
+ (327* - 2072 + 3)2%] + 48(ry)*[10A*
+ (1177% = 2004222 + (127* - 43722 + 10)2%])
[ {ABHA(A? - AH)[3A% + (872 — 3)A%]
+ 8(mr)2[1042 + (372 — 10)A21)2),
o/d=E£EQA -1/ & do/dA = E[£/2* + (d&/dA) (A - 1)/A]
Else IfA <A< A, Then
o/A=EJA-1)/AA+ Ef(A-A)/2 & do/dA=Ef
Else Fibril Failure
oc/A=0 & do/d1=0.
Return o/ A and do/dA.

C Collagen Model

A micro-structural model based on the physiology of crimped collagen fibers was
recently derived by [Freed and Doehring, 2004] that we have altered to meet our
needs (see Alg. 1); specifically, given a fiber stretch A, this model returns the true
stress o-/A and tangent modulus do-/dA of the fiber. There are four physiologic
parameters (material constants defined at the top of the algorithm) that the user
must supply; three if failure is not to be considered.

A typical pair of response curves are plotted in Fig. 8. The discontinuity ob-
served in the do/dA curve indicates that the model presented in Alg. 1 predicts a
stress o~ response that is continuous and once-differentiable in stretch A up to fiber
failure, which is not depicted in this figure. The values assigned to the model to
obtain these curves were Hy/ro = 27.5, Ry/ro = 2, and E; = 45MPa, which results
in a transitional stretch of A = 1.1.

This is but one example of a fiber stress/stretch model.

D Voigt Notation

Because the Lagrangian fields for stress S;; and strain E;j, i, j = 1,2, 3, are sym-
metric tensors, it is customary to express their components as six-dimensional ar-
rays So and E,, @ = 1,2, ..., 6. These arrays are not vector fields in the sense that
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Figure 8 Typical soft-tissue response curves for o-/1 and do-/dA.
they do not obey the tensor-transformation law. Nevertheless, they have proven to

be very useful in the employ of finite elements.
Given a Cartesian reference frame, the stress and strain arrays can be expressed

in terms of their tensor components via®
Sl Su El Ell
Sz S22 E2 E22
S3 S33 E3 E33
S, = = and E, = = s D1
@ S4 S12 = 521 @ E4 E12 + E21 ( )
Ss S13 = 831 Es Ej3 + E3
Se 823 = 832 Eg Ex3 + Ex

which is commonly referred to as Voigt notation [Belytschko et al., 2000, pp. 615-
618]. From thermodynamics, stress is described in terms of a potential function W
through the gradient

oW oW
Sij = Qo (fw + 5—6_';) x Sij = Sji, (D2)

where C;; is the Lagrangian (or Green) deformation field. It is more common to see
the above formula written in the condensed notation of tensors S = 2p0dW/3C (see
Eq. 8) with the implication being that its components are computed via Eq. (D2).

A note of caution. Some implementations exchange S, and S, and likewise, E4 and F.
This has no effect on formula written using Voigt notation, provided that the components
are correctly mapped between their tensor and Voigt representations.
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A stress increment dS;; is therefore related to a strain increment dE; = %dC,- §
in the Lagrangian frame through the linear approximation

S,

dSij = MijedEge  with M = Ee

dSq = MypdEg, (D3)
where the tangent modulus M, has a Voigt representation of

My Mia My3 My Mys Mg My, Mz Misz Mz Muis Mg

My My Mys Moy Mays Mog Maz11 My Mazsz Maziz Motz Moy

_ | M31 M3y M3z M3, Mas M3e M3311 M3322 M3333 Maziz Masis Msss
My Myy Myz Mag Mys My Mo Mizn Miozs Migi2 Mins Mg |’

Msy Msy; Ms3 Msy Mss Msg M3 Mizzz Mizss Mizia Miais Miss

Mg Mgz Me3 Mgy Mes Mes Ma311 Maszz Masss Maziz Moz Mo
(D4)
with Mog # Mg, unless the M;j, possess major symmetry M e = Mz ;. The tan-
gent modulus always possesses minor symmetries Mijxe = Mijo = M ikt = M jiex
because of the inherent symmetries in S;; and C;;. Major symmetry follows auto-
matically if stress S;; is given by a potential function F such that §; ;= 0F/OE;j, as

is the case in elasticity (see Eq. D2).

From Egs. (D2 & D3), it follows that the components of M, are obtained via

M;jre = 00 (

2 2 2 2
oW oW Fw &w )’ D5)

+ + +
8C;;0Cy; ~ 8Cj0Cq ~ 0C;0Ck = OC;:0Ck

so that M;ue = Mije = Mg = Mg and M;jee = Mig;. In tensor notation, the
tangent modulus is usually defined as M = 4093*W/3C AC (see Eq. 34) with the
implication being that its components are computed via Eq. (D5).

D.1 Tensor Products

Two tensor products naturally arise in constitutive construction that we denote as
A® B and A®B, and call the inner- and outer-dyadic products, respectively, or the
circle- and box-products for short, wherein A and B are taken to be symmetric.

The box product A ® B is defined by the sum
(AR B)ijee = S(AiBje + AieBji + AjBic + A ¢ By), (D6)

which possesses both minor and major symmetries, therefore (ARB) s = (ARB)g,,
and consequently, this product is commutative, i.c., AR B = B ® A. The Voigt
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representation of (A ® B),p has the symmetric matrix components:
(AR B)1y = A By,

(AR B)12 = AizBya,

(AR B)13 = A13B13,

(A®B)14 = $(Au1Bi2 + AizBny),

(A® B)is = 3(AnBi3 + AisBu),

(AR B)1s = 3(A12B13 + A3B12),

(AR B)y, = Agz B,

(AR B)y3 = A3 Bas,

(AR B)y = 3(A12Bn + AnB12),

(A B)as = 3(A12B23 + AnB12),

(AR B)ys = 3(AnnB2s + A3 By), (D7)
(A® B)33 = A33B33,

(AR B)3s = 5(A13B23 + A3 Bi3),

(AR B)ss = 3(A13B33 + As3B13),

(AR B)3s = 1(A23B33 + A33B3),

(AR B)as = $(A11 B2z + 2A12B12 + AnByy),

(AR B)ss = $(A11 By + A13Biz + A;2Bi3 + A3 Byy),
(AR Bas = }(A12B2s + A13Bxn + AnBis + ApsBna),
(AB B)ss = 1(A11B33 + 2A13B13 + A3 Byy),

(AR B)sg = (A12B33 + A13B23 + Ap3Bi3 + A3 B1o),
(AR B)gs = 3(AnaB33 + 2A23 B3 + A33B).

The circle product A ® B has components
(A® B)jjic = 5(AijBre + AijBu + AjiBie + AjiBe) = AijBre, (D8)

which reduce down to the simple expression (A ® B);je = A;;Be as a consequence
of A and B being symmetric. This well-known product has a Voigt notation of

A1B11 A11B2 An1Bss A1 Bia A11B13 AuBos
AxnBy1 A2xBa A B33z AnBia AnBiz A Bos
A33B11 A33Bay Az3Bsz A3B1z A33Biz AszBos
ApB11 A12Byy A12B33 A12Bi2 A1eBiz AipBos |’
Ay3B11 A13By A13B33 A13Biz A13Bis AzBas
A B11 A3 By A23Biz Ax3Brz AyBiy ApBas

(A®B),; = (D9)

where (A ® B)qg is not symmetric unless A = B; however, A® B) + (B ® A)
does yield a symmetric matrix in Voigt notation. This is because A ® B possesses
minor symmetry, but not major symmetry, in general. This dyadic product is not
commutative.
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D.2 Example

The theory of linear elasticity has stress components

S1 =811 = AE1 + Exp + Ez3) + 2uEy;,
82 =822 = AE1| + Ex + E33) + 2uEp,,
S3 = 833 = AE11 + Exp + E33) + 2uEs,
S4 = S12 = 2uEy,,
S5 =813 = 2uEs,
S = S23 = 2uEn;3,

and as such, its tangent modulus is readily determined to be
Mg = AI®1),5+2u(I B Dyp,

wherein A and y are the elastic moduli, and where

1 111000 1000 0 0
] 111000 0100 0 0
1 111000 0010 0 0
=101 U®Das=16500000]" Y®Des=|0001 0 0
0 000000 0000 1 0
0 000000 0000 0 1

The %’s in (I ® I)4p are offset by the 2’s present in dEg.
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